3.543 \(\int \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=157 \[ \frac{(2+2 i) a^{3/2} (B+i A) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a (3 B+4 i A) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{3 d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{3 d} \]

[Out]

((2 + 2*I)*a^(3/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot
[c + d*x]]*Sqrt[Tan[c + d*x]])/d - (2*a*((4*I)*A + 3*B)*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(3*d) -
 (2*a*A*Cot[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.511212, antiderivative size = 157, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {4241, 3593, 3598, 12, 3544, 205} \[ \frac{(2+2 i) a^{3/2} (B+i A) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a (3 B+4 i A) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{3 d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]),x]

[Out]

((2 + 2*I)*a^(3/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot
[c + d*x]]*Sqrt[Tan[c + d*x]])/d - (2*a*((4*I)*A + 3*B)*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(3*d) -
 (2*a*A*Cot[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(3*d)

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3593

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(a^2*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^
(n + 1))/(d*f*(b*c + a*d)*(n + 1)), x] - Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
 d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m -
 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3598

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*d - B*c)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f
*(n + 1)*(c^2 + d^2)), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac{5}{2}}(c+d x)} \, dx\\ &=-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{3 d}+\frac{1}{3} \left (2 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)} \left (\frac{1}{2} a (4 i A+3 B)-\frac{1}{2} a (2 A-3 i B) \tan (c+d x)\right )}{\tan ^{\frac{3}{2}}(c+d x)} \, dx\\ &=-\frac{2 a (4 i A+3 B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{3 d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{3 d}+\frac{\left (4 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int -\frac{3 a^2 (A-i B) \sqrt{a+i a \tan (c+d x)}}{2 \sqrt{\tan (c+d x)}} \, dx}{3 a}\\ &=-\frac{2 a (4 i A+3 B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{3 d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{3 d}-\left (2 a (A-i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a (4 i A+3 B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{3 d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{3 d}+\frac{\left (4 i a^3 (A-i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{(2+2 i) a^{3/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}-\frac{2 a (4 i A+3 B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{3 d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{3 d}\\ \end{align*}

Mathematica [A]  time = 4.64293, size = 259, normalized size = 1.65 \[ \frac{(a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \left (2 \sqrt{2} (B+i A) e^{-2 i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{\frac{i \left (1+e^{2 i (c+d x)}\right )}{-1+e^{2 i (c+d x)}}} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )-\frac{2 (\cot (c+d x)-i) (A \csc (c+d x)+(3 B+4 i A) \sec (c+d x))}{3 \sqrt{\cot (c+d x)} \sec ^{\frac{3}{2}}(c+d x)}\right )}{d \sec ^{\frac{5}{2}}(c+d x) (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]),x]

[Out]

(((2*Sqrt[2]*(I*A + B)*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[(I*
(1 + E^((2*I)*(c + d*x))))/(-1 + E^((2*I)*(c + d*x)))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]]
)/E^((2*I)*(c + d*x)) - (2*(-I + Cot[c + d*x])*(A*Csc[c + d*x] + ((4*I)*A + 3*B)*Sec[c + d*x]))/(3*Sqrt[Cot[c
+ d*x]]*Sec[c + d*x]^(3/2)))*(a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/(d*Sec[c + d*x]^(5/2)*(A*Cos[c
 + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.592, size = 2017, normalized size = 12.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c)),x)

[Out]

-1/3/d*a*2^(1/2)*(6*B*cos(d*x+c)^2*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x
+c))^(1/2)+3*B*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*s
in(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)
+1))+6*B*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-6*
I*A*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-3*I*A*((cos(d*x+c)-1
)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(
d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))-6*I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/
2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)+3*B*2^(1/2)*cos(d*x+c)*sin(d*x+c)-3*I*B*cos(d*x+c)^2*((
cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c
)+1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))+6*I*A*cos(d*x+c)^2*arctan
(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+3*I*A*cos(d*x+c)^2*((cos(d*x+c
)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((c
os(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))+6*I*A*cos(d*x+c)^2*((cos(d*x+c)-1)
/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-6*I*B*cos(d*x+c)^2*arctan(((cos(d*x+c)-
1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-6*I*B*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c
))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-A*cos(d*x+c)*2^(1/2)-3*I*B*2^(1/2)*cos(d*x+c)^2+6
*I*B*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+6*I*B*((cos(d*x+c)-
1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)+3*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/
2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)/sin(d*x
+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))+6*A*cos(d*x+c)^2*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1
/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+6*A*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((c
os(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)+3*A*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)
-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*s
in(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))+5*A*2^(1/2)*cos(d*x+c)^2+3*I*2^(1/2)*B-4*A*2^(1/2)-6*A*arctan(((cos(d*x+c)
-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-6*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arcta
n(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-3*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(
d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c
)+cos(d*x+c)+sin(d*x+c)-1))-6*B*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c)
)^(1/2)-3*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*
x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))-6*B*((cos(d
*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-3*B*2^(1/2)*sin(d*x+c)+5*I*A*2^
(1/2)*cos(d*x+c)*sin(d*x+c)-4*I*A*2^(1/2)*sin(d*x+c))*(cos(d*x+c)/sin(d*x+c))^(5/2)*(a*(I*sin(d*x+c)+cos(d*x+c
))/cos(d*x+c))^(1/2)*sin(d*x+c)/(I*sin(d*x+c)+cos(d*x+c)-1)/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [B]  time = 2.31883, size = 1486, normalized size = 9.46 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/9*(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*((((18*I - 18)*A + (18*I + 18)*B)
*a*cos(3*d*x + 3*c) + (-(6*I - 6)*A - (18*I + 18)*B)*a*cos(d*x + c) + (-(18*I + 18)*A + (18*I - 18)*B)*a*sin(3
*d*x + 3*c) + ((6*I + 6)*A - (18*I - 18)*B)*a*sin(d*x + c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
 - 1)) + (((18*I + 18)*A - (18*I - 18)*B)*a*cos(3*d*x + 3*c) + (-(6*I + 6)*A + (18*I - 18)*B)*a*cos(d*x + c) +
 ((18*I - 18)*A + (18*I + 18)*B)*a*sin(3*d*x + 3*c) + (-(6*I - 6)*A - (18*I + 18)*B)*a*sin(d*x + c))*sin(3/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))*sqrt(a) + ((((18*I + 18)*A - (18*I - 18)*B)*a*cos(2*d*x + 2*c
)^2 + ((18*I + 18)*A - (18*I - 18)*B)*a*sin(2*d*x + 2*c)^2 + (-(36*I + 36)*A + (36*I - 36)*B)*a*cos(2*d*x + 2*
c) + ((18*I + 18)*A - (18*I - 18)*B)*a)*arctan2(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c
) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*sin(d*x + c), 2*(cos(2*d*x + 2*c)^2
+ sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))
+ 2*cos(d*x + c)) + ((-(9*I - 9)*A - (9*I + 9)*B)*a*cos(2*d*x + 2*c)^2 + (-(9*I - 9)*A - (9*I + 9)*B)*a*sin(2*
d*x + 2*c)^2 + ((18*I - 18)*A + (18*I + 18)*B)*a*cos(2*d*x + 2*c) + (-(9*I - 9)*A - (9*I + 9)*B)*a)*log(4*cos(
d*x + c)^2 + 4*sin(d*x + c)^2 + 4*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(cos(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) -
1))^2) + 8*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
 - 1)))))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + ((((12*I - 12)*A*
a*cos(d*x + c) - (12*I + 12)*A*a*sin(d*x + c))*cos(2*d*x + 2*c)^2 + (12*I - 12)*A*a*cos(d*x + c) + ((12*I - 12
)*A*a*cos(d*x + c) - (12*I + 12)*A*a*sin(d*x + c))*sin(2*d*x + 2*c)^2 - (12*I + 12)*A*a*sin(d*x + c) + (-(24*I
 - 24)*A*a*cos(d*x + c) + (24*I + 24)*A*a*sin(d*x + c))*cos(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c) - 1)) + (((12*I + 12)*A*a*cos(d*x + c) + (12*I - 12)*A*a*sin(d*x + c))*cos(2*d*x + 2*c)^2 + (12
*I + 12)*A*a*cos(d*x + c) + ((12*I + 12)*A*a*cos(d*x + c) + (12*I - 12)*A*a*sin(d*x + c))*sin(2*d*x + 2*c)^2 +
 (12*I - 12)*A*a*sin(d*x + c) + (-(24*I + 24)*A*a*cos(d*x + c) - (24*I - 24)*A*a*sin(d*x + c))*cos(2*d*x + 2*c
))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^
2 - 2*cos(2*d*x + 2*c) + 1)^(5/4)*d)

________________________________________________________________________________________

Fricas [B]  time = 1.43004, size = 1274, normalized size = 8.11 \begin{align*} \frac{\sqrt{2}{\left ({\left (-20 i \, A - 12 \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (12 i \, A + 12 \, B\right )} a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} + 3 \, \sqrt{\frac{{\left (-8 i \, A^{2} - 16 \, A B + 8 i \, B^{2}\right )} a^{3}}{d^{2}}}{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac{{\left (\sqrt{2}{\left ({\left (2 i \, A + 2 \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (-2 i \, A - 2 \, B\right )} a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} + \sqrt{\frac{{\left (-8 i \, A^{2} - 16 \, A B + 8 i \, B^{2}\right )} a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (2 i \, A + 2 \, B\right )} a}\right ) - 3 \, \sqrt{\frac{{\left (-8 i \, A^{2} - 16 \, A B + 8 i \, B^{2}\right )} a^{3}}{d^{2}}}{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac{{\left (\sqrt{2}{\left ({\left (2 i \, A + 2 \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (-2 i \, A - 2 \, B\right )} a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - \sqrt{\frac{{\left (-8 i \, A^{2} - 16 \, A B + 8 i \, B^{2}\right )} a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (2 i \, A + 2 \, B\right )} a}\right )}{6 \,{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(sqrt(2)*((-20*I*A - 12*B)*a*e^(2*I*d*x + 2*I*c) + (12*I*A + 12*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sq
rt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) + 3*sqrt((-8*I*A^2 - 16*A*B + 8*I*B^
2)*a^3/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((2*I*A + 2*B)*a*e^(2*I*d*x + 2*I*c) + (-2*I*A - 2*B)*a)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c)
+ sqrt((-8*I*A^2 - 16*A*B + 8*I*B^2)*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*B)*a)) -
 3*sqrt((-8*I*A^2 - 16*A*B + 8*I*B^2)*a^3/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((2*I*A + 2*B)*a*e^(2*
I*d*x + 2*I*c) + (-2*I*A - 2*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*
d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - sqrt((-8*I*A^2 - 16*A*B + 8*I*B^2)*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*
I*d*x - 2*I*c)/((2*I*A + 2*B)*a)))/(d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**(3/2)*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \cot \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(5/2), x)